On an Extension of the Complex Series Method for the Convergence Acceleration of Orthogonal Expansions
نویسنده
چکیده
Recently, Sidi [Sidi, A. (1995): Acceleration of convergence of (generalized) Fourier series by the d-transformation. Ann. Numer. Math. 2, 381–406] proposed a method for the convergence acceleration of certain orthogonal expansions. The present contribution shows that it is possible to extend the method proposed by Sidi to a wider class of problems by simple means. The extended method is both simpler and also more effective. The theoretical basis for the latter method is analyzed. An example is presented that shows that it is possible to obtain the same accuracy using only half of the number of terms that are required in the method of Sidi.
منابع مشابه
Eigenfunction Expansions for Second-Order Boundary Value Problems with Separated Boundary Conditions
In this paper, we investigate some properties of eigenvalues and eigenfunctions of boundary value problems with separated boundary conditions. Also, we obtain formal series solutions for some partial differential equations associated with the second order differential equation, and study necessary and sufficient conditions for the negative and positive eigenvalues of the boundary value problem....
متن کاملRecurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials
Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$ x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x),$$ we find the coefficients $b_{i,j}^{(p,q,ell ,,r)}$ in the expansion $$ x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell }y^{r}f^{(p,q)}(x,y) =sumli...
متن کاملNonharmonic Gabor Expansions
We consider Gabor systems generated by a Gaussian function and prove certain classical results of Paley and Wiener on nonharmonic Fourier series of complex exponentials for the Gabor expansion. In particular, we prove a version of Plancherel-Po ́lya theorem for entire functions with finite order of growth and use the Hadamard factorization theorem to study regularity, exactness and deficienc...
متن کاملAn Analytic Method for Convergence Acceleration of Certain Hypergeometric Series
A method is presented for convergence acceleration of the generalized hypergeometric series 3F2 with the argument ±1 , using analytic properties of their terms. Iterated transformation of the series is performed analytically, which results in obtaining new fast converging expansions for some special functions and mathematical constants.
متن کاملThe coefficients of differentiated expansions of double and triple Jacobi polynomials
Formulae expressing explicitly the coefficients of an expansion of double Jacobi polynomials which has been partially differentiated an arbitrary number of times with respect to its variables in terms of the coefficients of the original expansion are stated and proved. Extension to expansion of triple Jacobi polynomials is given. The results for the special cases of double and triple ultraspher...
متن کامل